Jump to content

Portal:Mathematics

Page semi-protected
From Wikipedia, the free encyclopedia

The Mathematics Portal

Mathematics is the study of representing and reasoning about abstract objects (such as numbers, points, spaces, sets, structures, and games). Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered. (Full article...)

  Featured articles are displayed here, which represent some of the best content on English Wikipedia.

Selected image – show another

three-dimensional rendering of a pink, translucent Klein bottle
three-dimensional rendering of a pink, translucent Klein bottle
A Klein bottle is an example of a closed surface (a two-dimensional manifold) that is non-orientable (no distinction between the "inside" and "outside"). This image is a representation of the object in everyday three-dimensional space, but a true Klein bottle is an object in four-dimensional space. When it is constructed in three-dimensions, the "inner neck" of the bottle curves outward and intersects the side; in four dimensions, there is no such self-intersection (the effect is similar to a two-dimensional representation of a cube, in which the edges seem to intersect each other between the corners, whereas no such intersection occurs in a true three-dimensional cube). Also, while any real, physical object would have a thickness to it, the surface of a true Klein bottle has no thickness. Thus in three dimensions there is an inside and outside in a colloquial sense: liquid forced through the opening on the right side of the object would collect at the bottom and be contained on the inside of the object. However, on the four-dimensional object there is no inside and outside in the way that a sphere has an inside and outside: an unbroken curve can be drawn from a point on the "outer" surface (say, the object's lowest point) to the right, past the "lip" to the "inside" of the narrow "neck", around to the "inner" surface of the "body" of the bottle, then around on the "outer" surface of the narrow "neck", up past the "seam" separating the inside and outside (which, as mentioned before, does not exist on the true 4-D object), then around on the "outer" surface of the body back to the starting point (see the light gray curve on this simplified diagram). In this regard, the Klein bottle is a higher-dimensional analog of the Möbius strip, a two-dimensional manifold that is non-orientable in ordinary 3-dimensional space. In fact, a Klein bottle can be constructed (conceptually) by "gluing" the edges of two Möbius strips together.

Good articles – load new batch

  These are Good articles, which meet a core set of high editorial standards.

Did you know (auto-generated)load new batch

More did you know – view different entries

Did you know...
Did you know...
Showing 7 items out of 75

Selected article – show another


The real part (red) and imaginary part (blue) of the critical line Re(s) = 1/2 of the Riemann zeta-function.
Image credit: User:Army1987

The Riemann hypothesis, first formulated by Bernhard Riemann in 1859, is one of the most famous unsolved problems. It has been an open question for well over a century, despite attracting concentrated efforts from many outstanding mathematicians.

The Riemann hypothesis is a conjecture about the distribution of the zeros of the Riemann zeta-function ζ(s). The Riemann zeta-function is defined for all complex numbers s ≠ 1. It has zeros at the negative even integers (i.e. at s=-2, s=-4, s=-6, ...). These are called the trivial zeros. The Riemann hypothesis is concerned with the non-trivial zeros, and states that:

The real part of any non-trivial zero of the Riemann zeta function is ½

Thus the non-trivial zeros should lie on the so-called critical line ½ + it with t a real number and i the imaginary unit. The Riemann zeta-function along the critical line is sometimes studied in terms of the Z-function, whose real zeros correspond to the zeros of the zeta-function on the critical line.

The Riemann hypothesis is one of the most important open problems in contemporary mathematics; a $1,000,000 prize has been offered by the Clay Mathematics Institute for a proof. Most mathematicians believe the Riemann hypothesis to be true. (J. E. Littlewood and Atle Selberg have been reported as skeptical. Selberg's skepticism, if any, waned, from his young days. In a 1989 paper, he suggested that an analogue should hold for a much wider class of functions, the Selberg class.) (Full article...)

View all selected articles

Subcategories


Full category tree. Select [►] to view subcategories.

Topics in mathematics

General Foundations Number theory Discrete mathematics


Algebra Analysis Geometry and topology Applied mathematics
Source

Index of mathematics articles

ARTICLE INDEX:
MATHEMATICIANS:

WikiProjects

WikiProjects The Mathematics WikiProject is the center for mathematics-related editing on Wikipedia. Join the discussion on the project's talk page.

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

More portals